Beta Function Calculator

Beta Function

The Beta function is defined as:

1. Integral Representation:
\( \beta(m, n) = \int_0^1 x^{m-1} (1 - x)^{n-1} \, dx \)

2. Square Root Form:
\( \beta(m, n) = \frac{\sqrt{m} \cdot \sqrt{n}}{\sqrt{m + n}} \)

3. Factorial Form:
\( \beta(m, n) = \frac{(m - 1)! \, (n - 1)!}{(m + n - 1)!} \)

Gamma Function

Gamma of \( n \): \( \Gamma(n) \)

\( \Gamma(n) = \int_0^{\infty} e^{-x} x^{n-1} \, dx \quad (\text{when } n > 0) \)

Recursive Property:
\( \Gamma(n) = n \cdot \Gamma(n-1) = (n - 1)! \)

How to Use the Beta Function Calculator
Step-by-step Instructions

Enter 2 values that can be integers or decimals.

Neither of the numbers can be negative integers or 0.

ß(num1,num2) will be calculated by the program.






Click here to find more about Beta function